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Why tie or overload?

Complex objects look like simple variables
Hide details from users
More work for you, less work for your users

Sometimes a double edged sword



Tieing objects



What you can tie

e Just about any variable type
0 Scalars, Arrays, Hashes, Filehandles



Using tie

o Tie objects to a variable using tie

e Basic tie syntax
tie VARI ABLE, CLASS, OPTI ONS
e Options vary according to class used

tie $nunber, 'Tie::Scalar::Tinmeout', VALUE => 10,
EXPI RES => ' +1h';

tie @ile, '"Tie::File', "sonefile,txt';
tie %b, 'SDBM File', '"db_nanme', O RDWR O CREAT, 0666;
tie *FILE, 'Tie::Handle::Scalar', \$sone_scal ar;

e Program can now use variables as if they were "normal”

¢ All the clever stuff is hidden beneath the surface



The clever stuff

A class that can be used in a tie is a normal Perl class that
obeys some special rules

These rules define the names of method names that must
exist in the class

For example, a tied scalar class must contain methods called

O 0o o o

O

TIESCALAR - called when variable is tied to the class
STORE - called when variable value is set

FETCH - called when variable value is retrieved
UNTIE - called when variable is untied

DESTROY - called when the variable is destroyed

You can always get a reference to the underlying object by
calling tied



The clever stuff (cont)

e SO0, this code

tie $scalar, 'Sone::Tie::dass', $some, $options;
$scal ar = ' Foo';
print $scal ar

e Is converted by Perl to this (sort of!)

tied($var) = Sone::Tie::dass->TlI ESCALAR( $sone, $options);
ti ed($var) - >STORE(' Foo') ;
print tied($var)->FETCH



A simple tied scalar

package Ti e:: Scal ar: : Count down;

sub TI ESCALAR {
ny ($class, $start) = @;

return bless \$start, $cl ass;

}

sub FETCH {
ny $self = shift;

return $$sel f--;

}

sub STORE {
ny $self = shift;

return $$self = shift;
}

1;



Testing Tie::Scalar::Countdown
#! [/ usr/ bi n/ perl

use strict;
use war ni ngs;
$| ++;

use Tie:: Scal ar: : Count down;

nmy $count;

tie $count, 'Tie::Scal ar:: Countdown', 10
or die $!;

for (1 .. 5) {
print "$count\n";

$count = 100;

for (1 .. 5) {
print "$count\n";



Tieing other variable types

Other variable types work in exactly the same way
Each has it's own set of methods that need to be defined

Array

0 TIEARRAY, FETCH, STORE, FETCHSIZE, STORESIZE, POP,
PUSH, SHIFT, UNSHIFT, SPLICE, DELETE, EXISTS,
EXTEND,UNTIE and DESTROY

Hash

0 TIEHASH, FETCH, STORE, EXISTS, DELETE, CLEAR,
FIRSTKEY, NEXTKEY, UNTIE, DESTROY

Filehandle

0 TIEHANDLE, PRINT, PRINTF, WRITE, READLINE, GETC, READ,
CLOSE, UNTIE, DESTROY, BINMODE, OPEN, EOF, FILENO,
SEEK, TELL

See "perldoc perltie” for details of usage and parameters



Making life easier for yourself

Most variable types have a lot of methods to implement

You can make life easier for yourself by inheriting from the
Tie::StdFoo modules

These modules implement tied objects which have the
standard behaviour

You can inherit from them and only change the behaviour that
you want changed

Caveat: implementation must be a reference to that type of
variable



Tie::StdScalar example

e Using Tie::StdScalar
#! [ usr/ bi n/ perl

use strict;
use war ni ngs;

use Tie:: Scal ar:

ny $scal ar;
tie $scalar, 'Tie::StdScal ar';

$scal ar = 10;
print $scal ar;

o (Notice that the package Tie::StdScalar is in the module
Tie::Scalar.)

e This isn't very useful, we are just doing what we can already
do with real scalars

e It's more useful when we use Tie::StdFoo as a base class



Tie::Scalar::Countdown (version 2)

e We can reimplement Tie::Scalar::Countdown using
Tie::StdScalar

package Ti e:: Scal ar: : Count down;

use Tie:: Scal ar:
our @SA = 'Tie::StdScal ar';

sub TI ESCALAR {
ny ($class, $start) = @;

return bless \$start, $cl ass;

}

sub FETCH {
ny $self = shift;

return $$sel f--;

}
1;

e In our previous version, the STORE method wasn't doing
anything non-standard

o Now we just inherit the method from Tie::StdScalar



Tie::StdHash Example - Tie::Hash::FixedKeys

o Tie::Hash::FixedKeys allows you to define hashes with a fixed
set of keys.

o Most of the functionality is identical to a standard hash
e Just need to override methods that can alter the keys
package Ti e:: Hash:: Fi xedKeys;

use stript;
use war ni ngs;

use Carp;
use Tie:: Hash;
our @SA = 'Tie::StdHash';

sub TI EHASH {
nmy $class = shift;

ny %mash
@ash{ @}

bl ess \ %ash, $cl ass;

}

(undef) x @;



Tie::Hash::FixedKeys (cont)

sub STORE {
ny ($self, $key, $val) = @;

unl ess (exists $sel f->{$key}) {
croak "invalid key [$key] in hash\n";
return;

}
$sel f - >{$key} = $val;
}

sub DELETE {
ny ($self, $key) = @;

return unl ess exists $sel f->{3$key};
my $ret = S$sel f->{Skey};
$sel f->{$key} = undef;

return $ret;



Tie::Hash::FixedKeys (cont)

sub CLEAR {
ny $self = shift;

$sel f->{$ } = undef foreach keys %bsel f;

1;
e Use it like this:
use Tie:: Hash: : Fi xedKeys;

ny %mash

tie %ash, 'Tie::Hash::FixedKeys', 'foo', 'bar',
$hash{foo} = 'Foo';

$hash{qux} = "Qux'; # Error!

e See also "lock keys" in Hash::Util

'baz';



Another example

e Using methods like this it's easy to create variables that
expand or extend standard Perl behaviour in interesting ways

package Ti e: : Hash:: Cannabi nol ;

use strict;

use war ni ngs;

use Tie:: Hash;

our @SA = 'Tie::StdHash' ;

sub STORE {
ny ($self, $key, $val) = @;
return if rand > .75;
$sel f->{$key} = $val;

sub FETCH {

ny ($self, S$key) = @;
return if rand > .75;

return $sel f->{(keys %bsel f)[rand keys %bsel f]};
}

sub EXISTS { return rand > .5; }
1;



Making life easier for your users

e Whilst this hides most of the clever stuff from the users, they
still have to call tie

e This can potentially be confusing
e Attribute::Handlers makes it easier for them

e Instead of writing

ny %ar;
tie War, 'Tie::Foo', @one_options;

e They can now use
ny %ar : Foo (@one_options);

e Where "Fo0" is an attribute that you choose to represent your
class



Using Attribute::Handlers

e To enable this, add this to your module

use Attri bute:: Handl ers
autotie => { " CALLER ::Foo" =>  PACKAGE };

e For example, Tie::Hash::FixedKeys uses

use Attri bute:: Handl ers
autotie => { " CALLER ::FixedKeys" => _ PACKACE _};

e And you use it like this
nmy %ash : Fi xedKeys('foo', 'bar', 'baz');
e The parameters are passed into TIEHASH

e The attribute name doesn't have to have any connection to the
class name

use Attri bute:: Handl ers
autotie => { " CALLER ::Stoned" => __ PACKAGE };



Another example - External data

e Another good use for tied variables is to hide complex access
to external data.

o [For example the Met Office has five day weather forecasts for
various UK cities

e It would be nice to be able to access this simply
#! [/ usr/ bi n/ perl

use stript;
use war ni ngs;

use POSI X '"strftine';
use Tie:: Array: : UQ\at her;

nmy @ orecast : Forecast('London');

ny $day = tine;

foreach (@orecast) {
print strftime(' % % %', |ocaltine $day);
print ": Max $ ->{max}, Mn $ ->{mn}\n";
$day += 24*60*60;

}



Tie::Array::UKWeather

package Tie:: Array:: UKWeat her;

use strict;
use war ni ngs;

use Carp;
use LWpP: : Si npl e;
use Tie::Array;
use Attribute:: Handl ers
autotie => { " _CALLER ::Forecast" => _ PACKAGE _ };
our @SA = 'Tie::StdArray' ;

ny $url =
"http://ww. nmet-office.gov.uk/lib/includes/fsssi/city';

my %ity = (london => 'london.htm");



Tie::Array.:.UKWeather (cont)

sub TI EARRAY {
ny ($class, $city) = @;

croak "Unknown city $city" unless exists $city{lc $city};
ny $page = get "S$url/$city{lc $city}";

# Pl ease excuse qui ck hack!
ny @enps = $page =~ /(\d+) &deg; T g;

nmy @ orecast;

while (ny @lay = splice @enps, 0, 2) {
push @orecast, { max => $day[ 0],
mn => $day[ 1] };
}

return bless \@orecast, $class;

}
1;
e You would probably want to make this array read-only

o Find all the methods that change the array and make them
No-ops



More information

o perldoc perltie
e perldoc -f tie

e perldoc -f tied



Overloading



What is overloading
e Most languages that support OO have a feature that they call
"overloading"
e This is usually method overloading

o Multiple methods with the same name but different prototypes



Java Example

public Fraction(int num
I nt den);
public Fraction(Fraction F);
public Fraction();
e Each method takes a different set of parameters, but they all
return a Fraction object

o In Perl this is trivial (we'll see an example later)



Operator overloading

e In Perl we save the term "overloading" for something far more
interesting

e Operator overloading



What is operator overloading?

¢ Imagine you have a class that models fractions

ny $hal f

= Nunber:: Fraction->new(1l, 2);
ny $quarter

= Nunber:: Fracti on->new( 1, 4);
ny $three quarters = $hal f;
$t hree_quart ers->add($quarter);

e Nastyisn'tit
e Also error prone

o Can you spot the bug?



A better way

e Wouldn't this be nicer?

ny $hal f

= Nunber:: Fraction->new(1l, 2);
ny $quarter

= Nunber:: Fracti on->new( 1, 4);
nmy $three_quarters

= $hal f + $quarter;

e Or even this

ny $half ='1/2";
ny $quarter = '1/4";
ny $three quarters

= $hal f + $quarter;

e This is what operator overloading gives us



A Closer Look at Number::Fraction

e The constructor is an example of method overloading

e In Perl we only need one method

sub new {
ny $class = shift;
ny $self;
if (@ >= 2) {

return if $[0] =~/
$sel f->{nun} = $ [0]
$sel f->{den} = $ [1]
}oelsif (@ ==1) {
if (ref $_[0]) {

\Dl or $[1] =~ /\D;

if (UNIVERSAL::isa($_[0], $class) {

return $cl ass->new($_[ 0] - >{ nunt,

$_[0] ->{den});

} else {

croak "Can't nake a $class froma ", ref $ [0];

} else {

return unless $ [0] =~ m~A(\d+)/(\d+)]|;
$sel f->{nun} = $1;
$sel f->{den} = $2;

}



Number::Fraction constructor (cont)

Y elsif (1@) {
$sel f->{nunt = 0O;
| $sel f->{den} = 1;

bl ess $sel f, $cl ass;
$sel f->normal i se;
return $sel f;



Using Number::Fraction
$hal f = Nunber:: Fraction->newW1, 2);
$quarter = Nunber::Fraction->new('1/4");
$ot her _hal f = Nunber:: Fraction->new $hal f);

$zero = Nunber:: Fracti on->new



Number::Fraction::add

sub add {
ny ($self, $delta) = @;

if (ref $delta) {
if (UNIVERSAL: :isa($delta, ref $self)) {
$sel f->{nunt = $self->{nun} * $delta->{den}
+ $del ta->{nunm} * S$sel f->{den};
$sel f->{den} = $self->{den} * $delta->{den};
} else {
croak "Can't add a ", ref $delta, " to a ", ref $self;

} else {
if ($delta =~ m (\d+)/(\d+)|) {
$sel f - >add( Nunber : : Fracti on->new( $1, $2));
} elsif ($delta '~ /\D) {
$sel f - >add( Nunber: : Fracti on- >new($del ta, 1));
} else {
croak "Can't add $delta to a ", ref $self;

}

$sel f->normal i se;

}



Using overload.pm

use overload '+ => 'add';

o Allows you to write code like
$three_quarters = $half + S$quarter;
e Or rather, it almost does

e We need to do some work on add method first



The problem with add

Our current implementation of add works on the current object
$x + $y is reordered to $x->add($y)

$x is the current object

In code like $z = $x + Py the value of $x shouldn't change

Need to rewrite add so it returns a new object



Number::Fraction::add (version 2)

sub add {
m ($1, $r) = @;
if (ref $r) {
if (UNIVERSAL::isa($r, ref $lI) {
return
Nunber: : Fracti on->new( $l - >{nun} * $r->{den}
+ $r->{nunm * 3l ->{den},
$l ->{den} * $r->{den})
} else {

el se {

y o
}



Other Problems

e Our object now handles code like
$hal f = $quarter + '1/4';

e But what about

$half = '1/4'" + $quarter;

o Perl swaps the order of the operators and passes a flag telling
you that it has happened.



Reversed operands

sub add {
ny (I, $r, $rev) = @;

}

e This makes no difference for commutative operators (e.g. +
and *), but makes a difference for non-commutative operators
(e.g.-and/)



Overloadable operators

Arithmetic: +, +=, -, -=, *, *=, [, [=, %, %=, **, ¥*= <<, <<=, >>,
>>:1 X; X:’ ") =

Comparison <, < >, >= ==, 1=, <=> 1t le, gt, ge, eq, ne, cmp
Bit: &, #, |, neg, !

Increment/Decrement; ++, --

...and many others (see perldoc overload)



Magical Autogeneration

That's a lot of operators!

You don't need to define all of these operations
Perl can autogenerate many of them

++ can be derived from +

+= can be derived from +

- (unary) can be derived from - (binary)

All numeric comparisons can be derived from <=>

All string comparisons can be derived from cmp



Controlling Autogeneration

e Two special "operators" give finer control over autogeneration

0 nomethod - called if no other function defined
0 fallback - controls what autogeneration does

use overl oad
'-' => '"subtract',
fal |l back => 0,
nomet hod => sub {
croak "illegal operator $ [3]"

}i



Values for fallback
e undef - autogenerate methods (die if method can't be
generated)

e 1 - autogenerate method (if method can't be generated revert
to standard Perl behaviour)

e 0 - don't autogenerate methods



Type Conversion

Three special operators allow for type conversions

o
0+ converts to a number

} converts to a string (you'll sometimes see this as "\"\'"")

bool converts to a boolean value



Type Conversion Example

¢ In Number::Fraction

use overl oad
g{""} => "to_string',
"0+ => '"to_num,

sub to_string {

ny $self = shift;

return "$ ->{nun}/$_->{den}";
}

sub to_num {
ny $self = shift;
return $ {num/$ ->{den};

e Then in the program

my $half =
Nunber: : Fracti on->new( 1, 2);

print $half; # prints 1/2



Type Conversion and fallback

e Type conversion and fallback can be used together to prevent
you having to define any comparison operators

use overl oad
"0+ => "to_num,
fall back => 1;:

e Now any use of numeric comparison operators will call to_num



Handling Constants

e The last point at which we still need to refer to
Number::Fraction is when we create a fraction

e We can avoid that too using overload:.constant

nmy % const _handl ers =

(g => sub {
})return __ PACKAGE _->new($ [0]) || $_[1]
sub inport {

overl oad: : constant % const handl ers
if $[1] eq ':constants';

sub uni nport {
over| oad: : renove_constant (q => undef);
}



Defining Constant Handlers

Define a constant handler hash
Keys are integer, float, binary, g or gr
Values are subroutine references

Subroutine is passed three arguments

0 Original string representation of constant
0 How Perl wants to interpret the constant
0 (for g and gr) Describes how string is being used (q, qg, tr, S)

Install during import subroutine



Using Constant Handlers

use Nunber:: Fraction ':constants';

ny $half = '1/2";
print ref $half; # prints Nunber::Fraction

ny $x = '1/4" + '1/3";
print $x; # prints 7/12

$x += '1/12";
print $x; # prints 2/3

e S0 Number::Fraction now does everything we wanted



Another Example: Error Handling

e We all write code like this:

if ($rc = sone_func()) {
# do stuff

} else {
# handl e error

}
e But as $rc is false, it can't contain useful error information

o Overloading can solve this problem



Error::Overload

package Error:: Overl oad;
requi re Exporter;

use overl oad
T i :>IStringl’
"0+ => '"nunber',
bool => 'bool ean',
fall back => 1;

our @SA = 'Exporter';
our @EXPORT = gw do_succeed do _fail);

sub do_succeed {
ny %param= @ ;

ny $num = $par an{ nuni};
$num = 1 unl ess defined $num
ny $str = $paran{str};

$str = ' Success' unl ess defined $str;

bl ess { num => $num str => $str, bool

:>1}’

_ PACKACGE _;



Error::Overload (cont)

sub do_fail {
ny %param= @;

ny $num = $par an{ nuni};

$num = 0 unl ess defi ned $num

ny $str = $paran{str};

$str = 'Fail' unl ess defined $str;

bl ess { num => $num str => $str, bool => 0}, _ PACKAGE ;
}

sub string {
Ml

return $ [0]->{str};
}
sub nunber {

return $_[0]->{nuni;
}

sub bool ean {
return $_[0]->{bool };



Using Error::Overload
#! [/ usr/ bi n/ perl

use Error:: Overl oad;

if (my $rc = some_func( @ARGV)) {

# success

printf("[PASS] % : %\n", $rc, $rc);
} else {

# fail

printf("[FAIL] % : %\n", $rc, $rc);

sub sone_func {

if (@) {
return do_succeed(num => 200, str => 'K );
} else {
return do_fail (num => 500, str =>"'ENOARGS');
}
}

e See also:
"dualvar" (in Scalar::Util)

e Return::Value



More information

e perldoc overload



Any Questions?
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