Tieing and Overloading Objects in Perl

Dave Cross
Outcome Technologies

mailto:dave@dave.org.uk
http://www.outcometechnologies.com/

What We Will Cover

Why tie or overload?

Tieing objects

What you can tie

Using tie

Being lazy (using Tie::StdFo0)

Easier tie interfaces (Attribute::Handlers)
Extended examples

OO oo d

Overloading objects

Overloaded methods vs overloaded operators
Overloading operators

Stringification and numerifcation

Copy constructors

Overloading constants

Extended examples

O Ooo0oo0oogod

Why tie or overload?

Complex objects look like simple variables
Hide details from users
More work for you, less work for your users

Sometimes a double edged sword

Tieing objects

What you can tie

e Just about any variable type
0 Scalars, Arrays, Hashes, Filehandles

Using tie

o Tie objects to a variable using tie

e Basic tie syntax
tie VARI ABLE, CLASS, OPTI ONS
e Options vary according to class used

tie $nunber, 'Tie::Scalar::Tinmeout', VALUE => 10,
EXPI RES => ' +1h';

tie @ile, '"Tie::File', "sonefile,txt';
tie %b, 'SDBM File', '"db_nanme', O RDWR O CREAT, 0666;
tie *FILE, 'Tie::Handle::Scalar', \$sone_scal ar;

e Program can now use variables as if they were "normal”

¢ All the clever stuff is hidden beneath the surface

The clever stuff

A class that can be used in a tie is a normal Perl class that
obeys some special rules

These rules define the names of method names that must
exist in the class

For example, a tied scalar class must contain methods called

O 0o o o

O

TIESCALAR - called when variable is tied to the class
STORE - called when variable value is set

FETCH - called when variable value is retrieved
UNTIE - called when variable is untied

DESTROY - called when the variable is destroyed

You can always get a reference to the underlying object by
calling tied

The clever stuff (cont)

e SO0, this code

tie $scalar, 'Sone::Tie::dass', $some, $options;
$scal ar = ' Foo';
print $scal ar

e Is converted by Perl to this (sort of!)

tied($var) = Sone::Tie::dass->TlI ESCALAR($sone, $options);
ti ed($var) - >STORE(' Foo') ;
print tied($var)->FETCH

A simple tied scalar

package Ti e:: Scal ar: : Count down;

sub TI ESCALAR {
ny ($class, $start) = @;

return bless \$start, $cl ass;

}

sub FETCH {
ny $self = shift;

return $$sel f--;

}

sub STORE {
ny $self = shift;

return $$self = shift;
}

1;

Testing Tie::Scalar::Countdown
#! [/ usr/ bi n/ perl

use strict;
use war ni ngs;
$| ++;

use Tie:: Scal ar: : Count down;

nmy $count;

tie $count, 'Tie::Scal ar:: Countdown', 10
or die $!;

for (1 .. 5) {
print "$count\n";

$count = 100;

for (1 .. 5) {
print "$count\n";

Tieing other variable types

Other variable types work in exactly the same way
Each has it's own set of methods that need to be defined

Array

0 TIEARRAY, FETCH, STORE, FETCHSIZE, STORESIZE, POP,
PUSH, SHIFT, UNSHIFT, SPLICE, DELETE, EXISTS,
EXTEND,UNTIE and DESTROY

Hash

0 TIEHASH, FETCH, STORE, EXISTS, DELETE, CLEAR,
FIRSTKEY, NEXTKEY, UNTIE, DESTROY

Filehandle

0 TIEHANDLE, PRINT, PRINTF, WRITE, READLINE, GETC, READ,
CLOSE, UNTIE, DESTROY, BINMODE, OPEN, EOF, FILENO,
SEEK, TELL

See "perldoc perltie” for details of usage and parameters

Making life easier for yourself

Most variable types have a lot of methods to implement

You can make life easier for yourself by inheriting from the
Tie::StdFoo modules

These modules implement tied objects which have the
standard behaviour

You can inherit from them and only change the behaviour that
you want changed

Caveat: implementation must be a reference to that type of
variable

Tie::StdScalar example

e Using Tie::StdScalar
#! [usr/ bi n/ perl

use strict;
use war ni ngs;

use Tie:: Scal ar:

ny $scal ar;
tie $scalar, 'Tie::StdScal ar';

$scal ar = 10;
print $scal ar;

o (Notice that the package Tie::StdScalar is in the module
Tie::Scalar.)

e This isn't very useful, we are just doing what we can already
do with real scalars

e It's more useful when we use Tie::StdFoo as a base class

Tie::Scalar::Countdown (version 2)

e We can reimplement Tie::Scalar::Countdown using
Tie::StdScalar

package Ti e:: Scal ar: : Count down;

use Tie:: Scal ar:
our @SA = 'Tie::StdScal ar';

sub TI ESCALAR {
ny ($class, $start) = @;

return bless \$start, $cl ass;

}

sub FETCH {
ny $self = shift;

return $$sel f--;

}
1;

e In our previous version, the STORE method wasn't doing
anything non-standard

o Now we just inherit the method from Tie::StdScalar

Tie::StdHash Example - Tie::Hash::FixedKeys

o Tie::Hash::FixedKeys allows you to define hashes with a fixed
set of keys.

o Most of the functionality is identical to a standard hash
e Just need to override methods that can alter the keys
package Ti e:: Hash:: Fi xedKeys;

use stript;
use war ni ngs;

use Carp;
use Tie:: Hash;
our @SA = 'Tie::StdHash';

sub TI EHASH {
nmy $class = shift;

ny %mash
@ash{ @}

bl ess \ %ash, $cl ass;

}

(undef) x @;

Tie::Hash::FixedKeys (cont)

sub STORE {
ny ($self, $key, $val) = @;

unl ess (exists $sel f->{$key}) {
croak "invalid key [$key] in hash\n";
return;

}
$sel f - >{$key} = $val;
}

sub DELETE {
ny ($self, $key) = @;

return unl ess exists $sel f->{3$key};
my $ret = S$sel f->{Skey};
$sel f->{$key} = undef;

return $ret;

Tie::Hash::FixedKeys (cont)

sub CLEAR {
ny $self = shift;

$sel f->{$ } = undef foreach keys %bsel f;

1;
e Use it like this:
use Tie:: Hash: : Fi xedKeys;

ny %mash

tie %ash, 'Tie::Hash::FixedKeys', 'foo', 'bar',
$hash{foo} = 'Foo';

$hash{qux} = "Qux'; # Error!

e See also "lock keys" in Hash::Util

'baz';

Another example

e Using methods like this it's easy to create variables that
expand or extend standard Perl behaviour in interesting ways

package Ti e: : Hash:: Cannabi nol ;

use strict;

use war ni ngs;

use Tie:: Hash;

our @SA = 'Tie::StdHash' ;

sub STORE {
ny ($self, $key, $val) = @;
return if rand > .75;
$sel f->{$key} = $val;

sub FETCH {

ny ($self, S$key) = @;
return if rand > .75;

return $sel f->{(keys %bsel f)[rand keys %bsel f]};
}

sub EXISTS { return rand > .5; }
1;

Making life easier for your users

e Whilst this hides most of the clever stuff from the users, they
still have to call tie

e This can potentially be confusing
e Attribute::Handlers makes it easier for them

e Instead of writing

ny %ar;
tie War, 'Tie::Foo', @one_options;

e They can now use
ny %ar : Foo (@one_options);

e Where "Fo0" is an attribute that you choose to represent your
class

Using Attribute::Handlers

e To enable this, add this to your module

use Attri bute:: Handl ers
autotie => { " CALLER ::Foo" => PACKAGE };

e For example, Tie::Hash::FixedKeys uses

use Attri bute:: Handl ers
autotie => { " CALLER ::FixedKeys" => _ PACKACE _};

e And you use it like this
nmy %ash : Fi xedKeys('foo', 'bar', 'baz');
e The parameters are passed into TIEHASH

e The attribute name doesn't have to have any connection to the
class name

use Attri bute:: Handl ers
autotie => { " CALLER ::Stoned" => __ PACKAGE };

Another example - External data

e Another good use for tied variables is to hide complex access
to external data.

o [For example the Met Office has five day weather forecasts for
various UK cities

e It would be nice to be able to access this simply
#! [/ usr/ bi n/ perl

use stript;
use war ni ngs;

use POSI X '"strftine';
use Tie:: Array: : UQ\at her;

nmy @ orecast : Forecast('London');

ny $day = tine;

foreach (@orecast) {
print strftime(' % % %', |ocaltine $day);
print ": Max $ ->{max}, Mn $ ->{mn}\n";
$day += 24*60*60;

}

Tie::Array::UKWeather

package Tie:: Array:: UKWeat her;

use strict;
use war ni ngs;

use Carp;
use LWpP: : Si npl e;
use Tie::Array;
use Attribute:: Handl ers
autotie => { " _CALLER ::Forecast" => _ PACKAGE _ };
our @SA = 'Tie::StdArray' ;

ny $url =
"http://ww. nmet-office.gov.uk/lib/includes/fsssi/city';

my %ity = (london => 'london.htm");

Tie::Array.:.UKWeather (cont)

sub TI EARRAY {
ny ($class, $city) = @;

croak "Unknown city $city" unless exists $city{lc $city};
ny $page = get "S$url/$city{lc $city}";

Pl ease excuse qui ck hack!
ny @enps = $page =~ /(\d+) ° T g;

nmy @ orecast;

while (ny @lay = splice @enps, 0, 2) {
push @orecast, { max => $day[0],
mn => $day[1] };
}

return bless \@orecast, $class;

}
1;
e You would probably want to make this array read-only

o Find all the methods that change the array and make them
No-ops

More information

o perldoc perltie
e perldoc -f tie

e perldoc -f tied

Overloading

What is overloading
e Most languages that support OO have a feature that they call
"overloading"
e This is usually method overloading

o Multiple methods with the same name but different prototypes

Java Example

public Fraction(int num
I nt den);
public Fraction(Fraction F);
public Fraction();
e Each method takes a different set of parameters, but they all
return a Fraction object

o In Perl this is trivial (we'll see an example later)

Operator overloading

e In Perl we save the term "overloading" for something far more
interesting

e Operator overloading

What is operator overloading?

¢ Imagine you have a class that models fractions

ny $hal f

= Nunber:: Fraction->new(1l, 2);
ny $quarter

= Nunber:: Fracti on->new(1, 4);
ny $three quarters = $hal f;
$t hree_quart ers->add($quarter);

e Nastyisn'tit
e Also error prone

o Can you spot the bug?

A better way

e Wouldn't this be nicer?

ny $hal f

= Nunber:: Fraction->new(1l, 2);
ny $quarter

= Nunber:: Fracti on->new(1, 4);
nmy $three_quarters

= $hal f + $quarter;

e Or even this

ny $half ='1/2";
ny $quarter = '1/4";
ny $three quarters

= $hal f + $quarter;

e This is what operator overloading gives us

A Closer Look at Number::Fraction

e The constructor is an example of method overloading

e In Perl we only need one method

sub new {
ny $class = shift;
ny $self;
if (@ >= 2) {

return if $[0] =~/
$sel f->{nun} = $ [0]
$sel f->{den} = $ [1]
}oelsif (@ ==1) {
if (ref $_[0]) {

\Dl or $[1] =~ /\D;

if (UNIVERSAL::isa($_[0], $class) {

return $cl ass->new($_[0] - >{ nunt,

$_[0] ->{den});

} else {

croak "Can't nake a $class froma ", ref $ [0];

} else {

return unless $ [0] =~ m~A(\d+)/(\d+)]|;
$sel f->{nun} = $1;
$sel f->{den} = $2;

}

Number::Fraction constructor (cont)

Y elsif (1@) {
$sel f->{nunt = 0O;
| $sel f->{den} = 1;

bl ess $sel f, $cl ass;
$sel f->normal i se;
return $sel f;

Using Number::Fraction
$hal f = Nunber:: Fraction->newW1, 2);
$quarter = Nunber::Fraction->new('1/4");
$ot her _hal f = Nunber:: Fraction->new $hal f);

$zero = Nunber:: Fracti on->new

Number::Fraction::add

sub add {
ny ($self, $delta) = @;

if (ref $delta) {
if (UNIVERSAL: :isa($delta, ref $self)) {
$sel f->{nunt = $self->{nun} * $delta->{den}
+ $del ta->{nunm} * S$sel f->{den};
$sel f->{den} = $self->{den} * $delta->{den};
} else {
croak "Can't add a ", ref $delta, " to a ", ref $self;

} else {
if ($delta =~ m (\d+)/(\d+)|) {
$sel f - >add(Nunber : : Fracti on->new($1, $2));
} elsif ($delta '~ /\D) {
$sel f - >add(Nunber: : Fracti on- >new($del ta, 1));
} else {
croak "Can't add $delta to a ", ref $self;

}

$sel f->normal i se;

}

Using overload.pm

use overload '+ => 'add';

o Allows you to write code like
$three_quarters = $half + S$quarter;
e Or rather, it almost does

e We need to do some work on add method first

The problem with add

Our current implementation of add works on the current object
$x + $y is reordered to $x->add($y)

$x is the current object

In code like $z = $x + Py the value of $x shouldn't change

Need to rewrite add so it returns a new object

Number::Fraction::add (version 2)

sub add {
m ($1, $r) = @;
if (ref $r) {
if (UNIVERSAL::isa($r, ref $lI) {
return
Nunber: : Fracti on->new($l - >{nun} * $r->{den}
+ $r->{nunm * 3l ->{den},
$l ->{den} * $r->{den})
} else {

el se {

y o
}

Other Problems

e Our object now handles code like
$hal f = $quarter + '1/4';

e But what about

$half = '1/4'" + $quarter;

o Perl swaps the order of the operators and passes a flag telling
you that it has happened.

Reversed operands

sub add {
ny (I, $r, $rev) = @;

}

e This makes no difference for commutative operators (e.g. +
and *), but makes a difference for non-commutative operators
(e.g.-and/)

Overloadable operators

Arithmetic: +, +=, -, -=, *, *=, [, [=, %, %=, **, ¥*= <<, <<=, >>,
>>:1 X; X:’ ") =

Comparison <, < >, >= ==, 1=, <=> 1t le, gt, ge, eq, ne, cmp
Bit: &, #, |, neg, !

Increment/Decrement; ++, --

...and many others (see perldoc overload)

Magical Autogeneration

That's a lot of operators!

You don't need to define all of these operations
Perl can autogenerate many of them

++ can be derived from +

+= can be derived from +

- (unary) can be derived from - (binary)

All numeric comparisons can be derived from <=>

All string comparisons can be derived from cmp

Controlling Autogeneration

e Two special "operators" give finer control over autogeneration

0 nomethod - called if no other function defined
0 fallback - controls what autogeneration does

use overl oad
'-' => '"subtract',
fal |l back => 0,
nomet hod => sub {
croak "illegal operator $ [3]"

}i

Values for fallback
e undef - autogenerate methods (die if method can't be
generated)

e 1 - autogenerate method (if method can't be generated revert
to standard Perl behaviour)

e 0 - don't autogenerate methods

Type Conversion

Three special operators allow for type conversions

o
0+ converts to a number

} converts to a string (you'll sometimes see this as "\"\'"")

bool converts to a boolean value

Type Conversion Example

¢ In Number::Fraction

use overl oad
g{""} => "to_string',
"0+ => '"to_num,

sub to_string {

ny $self = shift;

return "$ ->{nun}/$_->{den}";
}

sub to_num {
ny $self = shift;
return $ {num/$ ->{den};

e Then in the program

my $half =
Nunber: : Fracti on->new(1, 2);

print $half; # prints 1/2

Type Conversion and fallback

e Type conversion and fallback can be used together to prevent
you having to define any comparison operators

use overl oad
"0+ => "to_num,
fall back => 1;:

e Now any use of numeric comparison operators will call to_num

Handling Constants

e The last point at which we still need to refer to
Number::Fraction is when we create a fraction

e We can avoid that too using overload:.constant

nmy % const _handl ers =

(g => sub {
})return __ PACKAGE _->new($ [0]) || $_[1]
sub inport {

overl oad: : constant % const handl ers
if $[1] eq ':constants';

sub uni nport {
over| oad: : renove_constant (q => undef);
}

Defining Constant Handlers

Define a constant handler hash
Keys are integer, float, binary, g or gr
Values are subroutine references

Subroutine is passed three arguments

0 Original string representation of constant
0 How Perl wants to interpret the constant
0 (for g and gr) Describes how string is being used (q, qg, tr, S)

Install during import subroutine

Using Constant Handlers

use Nunber:: Fraction ':constants';

ny $half = '1/2";
print ref $half; # prints Nunber::Fraction

ny $x = '1/4" + '1/3";
print $x; # prints 7/12

$x += '1/12";
print $x; # prints 2/3

e S0 Number::Fraction now does everything we wanted

Another Example: Error Handling

e We all write code like this:

if ($rc = sone_func()) {
do stuff

} else {
handl e error

}
e But as $rc is false, it can't contain useful error information

o Overloading can solve this problem

Error::Overload

package Error:: Overl oad;
requi re Exporter;

use overl oad
T i :>IStringl’
"0+ => '"nunber',
bool => 'bool ean',
fall back => 1;

our @SA = 'Exporter';
our @EXPORT = gw do_succeed do _fail);

sub do_succeed {
ny %param= @ ;

ny $num = $par an{ nuni};
$num = 1 unl ess defined $num
ny $str = $paran{str};

$str = ' Success' unl ess defined $str;

bl ess { num => $num str => $str, bool

:>1}’

_ PACKACGE _;

Error::Overload (cont)

sub do_fail {
ny %param= @;

ny $num = $par an{ nuni};

$num = 0 unl ess defi ned $num

ny $str = $paran{str};

$str = 'Fail' unl ess defined $str;

bl ess { num => $num str => $str, bool => 0}, _ PACKAGE ;
}

sub string {
Ml

return $ [0]->{str};
}
sub nunber {

return $_[0]->{nuni;
}

sub bool ean {
return $_[0]->{bool };

Using Error::Overload
#! [/ usr/ bi n/ perl

use Error:: Overl oad;

if (my $rc = some_func(@ARGV)) {

success

printf("[PASS] % : %\n", $rc, $rc);
} else {

fail

printf("[FAIL] % : %\n", $rc, $rc);

sub sone_func {

if (@) {
return do_succeed(num => 200, str => 'K);
} else {
return do_fail (num => 500, str =>"'ENOARGS');
}
}

e See also:
"dualvar" (in Scalar::Util)

e Return::Value

More information

e perldoc overload

Any Questions?

	Title
	What We Will Cover
	Why tie or overload?
	Tieing objects
	What you can tie
	Using tie
	The clever stuff
	The clever stuff (cont)
	A simple tied scalar
	Testing Tie::Scalar::Countdown
	Tieing other variable types
	Making life easier for yourself
	Tie::StdScalar example
	Tie::Scalar::Countdown (version 2)
	Tie::StdHash Example - Tie::Hash::FixedKeys
	Tie::Hash::FixedKeys (cont)
	Tie::Hash::FixedKeys (cont)
	Another example
	Making life easier for your users
	Using Attribute::Handlers
	Another example - External data
	Tie::Array::UKWeather
	Tie::Array::UKWeather (cont)
	More information

	Overloading
	What is overloading
	Java Example
	Operator overloading
	What is operator overloading?
	A better way
	A Closer Look at Number::Fraction
	Number::Fraction constructor (cont)
	Using Number::Fraction

	Number::Fraction::add
	Using overload.pm
	The problem with add
	Number::Fraction::add (version 2)
	Other Problems
	Reversed operands
	Overloadable operators
	Magical Autogeneration
	Controlling Autogeneration
	Values for fallback
	Type Conversion
	Type Conversion Example
	Type Conversion and fallback
	Handling Constants
	Defining Constant Handlers
	Using Constant Handlers
	Another Example: Error Handling
	Error::Overload
	Error::Overload (cont)
	Using Error::Overload
	More information
	Any Questions?

